\[u(c)= c^{1-\epsilon}/(1-\epsilon)\]
\[X_{t} = \int_{0}^{M_{t}} X_{i} di\]
(x=xi for all i).
\(L= L_{1}+ L_{2}\)
\[Y_{t} = M_{t}(L^{1-\alpha}x^{\alpha}-x)\] - Growth rate:
\[g=(1/\epsilon) (\lambda (1-\alpha/\alpha L\alpha^{2/1-\alpha}-\rho)\]
\[\phi<1\]
\(g = M = \lambda L_{2}\) so we have \(r=(L-g)\) \[g = (\lambda\alpha L-\rho)/(\alpha+\epsilon)\]